Math 601 Final (sample test)

Name:

This exam has 11 questions, for a total of 150 points.
Please answer each question in the space provided. Please write full solutions, not just answers. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	10	
2	10	
3	15	
4	10	
5	10	
6	15	
7	20	
8	20	
9	15	
10	15	
11	10	
Total:	150	

Question 1. (10 pts)

(a) Consider the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2\end{array}\right]$. The eigenvalues of A are 1,2 and 3 . Is A diagonalizable? Justify your answer.
(b) Suppose $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{7}$ is linear mapping. Can F be surjective? Justify your answer.

Question 2. (10 pts)
Determine whether

$$
f(z)=e^{-y}((x+1) \cos x-y \sin (x))+i e^{-y}((x+1) \sin x+y \cos x)
$$

is analytic on \mathbb{C}, where $z=x+i y$.

Question 3. (15 pts)
Evaluate the integral

$$
\int_{C} \frac{e^{z}}{z^{2}-4 z+3} d z
$$

where C is the circle centered at 0 with radius 4 .

Question 4. (10 pts)
Evaluate

$$
\int_{\gamma}\left(3 z^{2}+1\right) d z
$$

where γ is the curve $\gamma(t)=\left(\sin t, t^{2}+t\right)$ for $t \in[0, \pi]$, that is, the curve starts at $(0,0)$ and ends at $\left(0, \pi^{2}+\pi\right)$.

Question 5. (10 pts)
Use the residue theorem to evaluate the following integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{2-\sin \theta}
$$

Question 6. (15 pts)
Use the residue theorem to evaluate the following integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

Question 7. (20 pts)
Given the matrix

$$
A=\left[\begin{array}{rrr}
4 & 0 & -2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find all eigenvalues of A.
(b) Find a basis for each eigenspace.
(c) Determine whether A is diagonalizable. If yes, find an invertible matrix S so that

$$
S^{-1} A S
$$

is diagonal. If not, explain why.

Question 8. (20 pts)
Let V be the subspace of \mathbb{R}^{4} spanned by

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
4 \\
0 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
4 \\
5 \\
8 \\
4
\end{array}\right] .
$$

(a) Use Gram-Schmidt process to find an orthonormal basis of V.
(b) Find the projection of

$$
\vec{x}=\left[\begin{array}{c}
3 \\
-1 \\
5 \\
0
\end{array}\right]
$$

onto V.

Question 9. (15 pts)
Let V be the vector space spanned by $\left\{e^{x}, e^{-x}, x e^{x}, x e^{-x}\right\}$. Accept as a fact that

$$
e^{x}, e^{-x}, x e^{x}, x e^{-x}
$$

form a basis for V. Let us denote this basis by \mathfrak{B}. Let

$$
T(f)=2 f-f^{\prime}
$$

be a linear transformation from V to V.
(a) Find the \mathfrak{B}-matrix of T.
(b) Is T an isomorphism?

Question 10. (15 pts)
Given

$$
A=\left[\begin{array}{rrrrr}
2 & 2 & -3 & 1 & 13 \\
1 & 1 & 1 & 1 & -1 \\
3 & 3 & -5 & 0 & 14 \\
6 & 6 & -2 & 4 & 16
\end{array}\right]
$$

(a) Find a basis of $\operatorname{Ker}(A)$.
(b) Find a basis of the row space of A.

Question 11. (10 pts)

Suppose λ is an eigenvalue of an $n \times n$-matrix A.
(a) Show that λ^{n} is an eigenvalue of A^{n}.
(b) Consider the matrix

$$
B=c_{n} A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I_{n}
$$

where c_{i} are real numbers. Show that the real number

$$
\mu=c_{n} \lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}
$$

an eigenvalue of B.

